skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Sirong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The EuO/SrTiO3 heterojunction is a promising combination of a ferromagnetic material and a two-dimensional electron system. We explore the deposition of Eu metal on SrTiO3/Si pseudo-substrates, with varying SrTiO3 (STO) thickness, under ultrahigh vacuum conditions. By varying the thickness of the STO layer (2-10 nm) and the deposition temperature (20-300 °C), we investigate the process by which oxygen is scavenged from STO by Eu. In situ x-ray photoelectron spectroscopy is used to investigate the electronic structure of the nominal Eu/STO/Si stack. We find that as a result of Eu deposition, epitaxial EuO is formed on thick STO (6-10 nm), leaving behind a highly oxygen-deficient SrTiO3-δ layer of ∼4 nm in thickness. However, if the thickness of the STO layer is comparable to or less than the scavenging depth, the crystal structure of STO is disrupted and a solid state reaction between Eu, Si, and STO occurs when the deposition is done at a high temperature (300 °C). On the other hand, at a low temperature (20 °C), only a 1-2 nm-thick EuO interlayer is grown, on top of which the Eu metal appears to be stable. This study elucidates the growth process under different conditions and provides a better understanding and control of this system. 
    more » « less